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ABSTRACT

Cartesian tensor basis have been widely used to approxi-

mate spherical functions. In Medical Imaging, tensors of

various orders have been used to model the diffusivity func-

tion in Diffusion-weighted MRI data sets. However, it is

known that the peaks of the diffusivity do not correspond to

orientations of the underlying fibers and hence the displace-

ment probability profiles should be employed instead. In this

paper, we present a novel representation of the probability

profile by a 4th order tensor, which is a smooth spheri-

cal function that can approximate single-fibers as well as

multiple-fiber structures. We also present a method for ef-

ficiently estimating the unknown tensor coefficients of the

probability profile directly from a given high-angular resolu-

tion diffusion-weighted (HARDI) data set. The accuracy of

our model is validated by experiments on synthetic and real

HARDI datasets from a fixed rat spinal cord.

Index Terms— Displacement probability, Tensors, Fourier

Transform, DW-MRI

1. INTRODUCTION

In Medical Imaging, due to the advances in the imaging tech-

nology over the last decade, it has become possible to acquire

high angular resolution magnetic resonance (MR) images that

allows one to infer the apparent diffusivity of water in tissue.

Several physical quantities that can be estimated from the ac-

quired MR data such as the diffusivity of water and the dis-

placement probability of its molecules are spherical functions.

There are several ways to model a spherical function. One

way is to employ the spherical harmonics basis whose natural

space is the unit sphere. Cartesian tensor basis evaluated on

the unit sphere can also be used for modeling spherical func-

tions and since they are multi-linear forms, are quite efficient

to compute and lead to simple formulations.

Cartesian tensor basis of order 2 has been used in liter-

ature for approximating the local diffusivity in DT-MRI [1].
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In this case the diffusivity can be written in the form vT Dv,

where D is a 3 × 3 symmetric positive definite matrix. How-

ever, 2nd-order tensors are incapable of modeling complex

geometry of the diffusivity function in practice for many

cases (see [2, 3], such as in the presence of fiber-crossings,

and a higher-order approximation must be employed instead.

Higher-order tensors have been used to model either the local

diffusivity function [4, 5], or the Kurtosis component of it [6].

However, in all cases the peaks of the estimated higher-order

tensor do not necessarily yield the distinct orientations of

the underlying distinct fiber bundles [2]. Hence, one should

instead employ the displacement probability profiles given by

the Fourier integral

P (r0r) =
∫

S(q)
S0

e−2πiqT rr0dq (1)

where q is the reciprocal space vector, S(q) is the DW-MRI

signal value associated with vector q, S0 the zero gradient

signal and r and r0 is the direction and magnitude respectively

of the displacement vector. However, the computation of the

integral in Eq. 1 is a task that involves numerical integration

or approximations.

In order to avoid the aforementioned computational ef-

fort and the possible inaccuracies introduced by this step, one

can directly estimate the displacement probability from the

given DW-MRI data. In this paper we propose a novel rep-

resentation of the displacement probability profile by using

the 4th-order Cartesian tensor basis. 4th-order tensors have

been studied recently in [5] showing their capability to model

multi-lobed diffusivity functions. In our model, the lobes of

the probability profile, which is expressed in the form of a

4th-order tensor, correspond directly to orientations of dis-

tinct fiber distributions and thus there is no need to evaluate

the integral of Eq.1. We also present a novel method for ef-

ficiently estimating the 15 unknown tensor coefficients of the

displacement probability from a given HARDI dataset. We

compare the performance of our method in computing accu-

rate fiber orientations with several other existing techniques,

demonstrating the efficiency and accuracy of our model.
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2. SPHERICAL FUNCTION TENSORIAL
APPROXIMATION

A spherical function can be approximated by a nth-order

Cartesian tensor expressed in the following form

T (v) =
∑

k+l+m=n

Tk,l,mvk
1vl

2v
m
3 (2)

where v = [v1 v2 v3]
T

is a unit vector. The spherical func-

tions modeled by Eq. 2 are antipodal symmetric (T (v) =
T (−v)) for even orders.

The ability of a Cartesian tensors to approximate the com-

plex geometry of a spherical function with many lobes in-

creases with the order. A 2nd-order tensor (commonly used

in DT-MRI) can only be used for approximating antipodal

symmetric spherical functions with a single lobe. For ap-

proximating functions with more lobes, higher-order tensors

are required. In the following sections, we employ higher-

order tensors to model the displacement probability profile in

HARDI datasets.

3. HIGHER-ORDER BASIS FOR HARDI
APPROXIMATION

In this section we present a novel representation of the dis-

placement probability profile as a higher-order tensor and a

method for direct estimation from a given DW-MRI dataset.

We model the probability profile by using the 4th-order Carte-

sian tensor basis as follows

P (r) =
∑

i+j+k=4

ci,j,k(r0)ri
1r

j
2r

k
3 (3)

where ci,j,k(r0) are the tensor coefficients estimated for a

given magnitude r0 of the displacement vector. Given r0,

Eq. 3 is a spherical function since the only argument is the

unit vector r. In the case of 4th-order tensors there are 15
unique unknown coefficients ci,j,k(r0) that need to be esti-

mated. However, since in our application, the given data is

the DW-MRI signal and not the displacement probability, we

need to define a set of functions that approximate the signal,

and have the following properties: a) their Fourier integral

gives the 4th-order tensorial basis functions, and b) can be

computed analytically.

A set of functions that have the above properties is pre-

sented in the right column of table 1. This set of functions

was obtained by taking all the possible combinations of par-

tial derivatives (∂/∂q1)i(∂/∂q2)j(∂/∂q3)kB(q), where i +
j +k = 4 and B(q) is a real-valued function in �3 defined as

B(q) = e−qT q (4)

The Fourier integral of each partial derivative of Eq. 4 is ex-

pressed as

ri
1r

j
2r

k
3c =

∫
∂i∂j∂k

∂qi
1∂qj

2∂qk
3

B(q)e−2πiqT rr0dq (5)

P (r) basis Corresponding S(q)/S0 basis

r4
1 (12 − 48q2

1 + 16q4
1)e−qT q

r4
2 (12 − 48q2

2 + 16q4
2)e−qT q

r4
3 (12 − 48q2

3 + 16q4
3)e−qT q

r2
1r

2
2 (−2 + 4q2

1)(−2 + 4q2
2)e−qT q

r2
2r

2
3 (−2 + 4q2

2)(−2 + 4q2
3)e−qT q

r2
1r

2
3 (−2 + 4q2

1)(−2 + 4q2
3)e−qT q

r2
1r2r3 4q2q3(−2 + 4q2

1)e−qT q

r1r
2
2r3 4q1q3(−2 + 4q2

2)e−qT q

r1r2r
2
3 4q1q2(−2 + 4q2

3)e−qT q

r3
1r2 −2q2(12q1 − 8q3

1)e−qT q

r3
1r3 −2q3(12q1 − 8q3

1)e−qT q

r1r
3
2 −2q1(12q2 − 8q3

2)e−qT q

r3
2r3 −2q3(12q2 − 8q3

2)e−qT q

r1r
3
3 −2q1(12q3 − 8q3

3)e−qT q

r2r
3
3 −2q2(12q3 − 8q3

3)e−qT q

ri
1r

j
2r

k
3 (∂/∂q1)i(∂/∂q2)j(∂/∂q3)kB(q)

Table 1. Proposed basis functions

where c is a constant whose value is not dependent on r. Note

that the left side of Eq. 5 is a Cartesian tensor basis function.

Hence we can employ the functions presented in table 1 to

model the displacement probability profile as

P (r) =
∫ ∑

i+j+k=4

ci,j,k
∂i∂j∂k

∂qi
1∂qj

2∂qk
3

B(q)e−2πiqT rr0dq

(6)

In the model proposed in Eq.6, the approximated DW-MRI

signal has asymptotic behavior (when ‖ q ‖→ ∞) similar to

that of the commonly used Stejskal-Tanner equation [7]. Fur-

thermore, by substituting Eq. 5 into 6 the displacement prob-

ability profile is modeled as a 4th-order tensor (Eq. 3). By

using known properties of the Fourier transform, the integral

in Eq. 6 can be re-written in the following more convenient

form that we will use later in Sec. 4.

P (r) =
∫ ∑

i+j+k=4

c′i,j,k
∂i∂j∂k

∂qi
1∂qj

2∂qk
3

B(q/r0)e−2πiqT rdq

(7)

where, c′i,j,k = ci,j,k/r0. Note the presence of r0 in the argu-

ment of B(q/r0).
Figure 1 shows 3D plots of three of the basis functions

(∂/∂q1)i(∂/∂q2)j(∂/∂q3)kB(q). By observing the figure,

we can see the variability in the shape of the basis functions

(e.g. crosses and peanut-like shapes). These characteristics

of the functions provide the ability to our model to approxi-

mate complex geometries such as fiber crossings. In the next

section we employ our proposed model (given by Eq. 7) to ap-

proximate the displacement probability profiles from a given

set of high angular resolution diffusion-weighted images.
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Fig. 1. 3D plots of three of the basis functions from Table 1.

The functions were evaluated for varying ‖ q ‖ over a unit

circle of directions q. The circle was defined by fixing the

elevation spherical coordinate to π/3 and varying azimuth.

4. FAST ESTIMATION FROM HARDI DATASETS

Given a set of N diffusion-weighted MR images Sn associ-

ated with diffusion gradient directions gn, n = 1 . . . N , we

seek to estimate the 15 unknown coefficients c′i,j,k in Eq. 7

by minimizing the following energy

E =
N∑

n=1

⎛
⎝ ∑

i+j+k=4

c′i,j,k
∂i∂j∂k

∂qi
1∂qj

2∂qk
3

B(q/r0) − Sn/S0

⎞
⎠

2

(8)

where S0 is the zero gradient image. If N > 15 Eq. 8 can be

minimized by solving an over-determined linear system. This

system is formed by constructing an N -dimensional vector

S that consists of the signal values Sn and a N × 15 ma-

trix A whose entries are the values of our 15 dimensional ba-

sis (∂/∂q1)i(∂/∂q2)j(∂/∂q3)kB(αgn) ∀n = 1 . . . N , where

α =‖ qn ‖ /r0. We note that α depends only on r0 if the

diffusion-weighted images were acquired with a fixed b-value

since in this case ‖ qn ‖ is the same constant ∀n = 1 . . . N .

In our experiments we used α = 0.5. The estimated coef-

ficients c′i,j,k are the components of the vector x in the fol-

lowing over-determined linear system Ax = S, which can be

solved very efficiently.

After solving the above system, we can compute the di-

rections of the distinct fiber populations by finding the peaks

of Eq. 3. The probability profile can be visualized by plotting

Eq. 3 as a spherical function (i.e. for all unit vectors r) as

shown in the experimental result section.

5. EXPERIMENTAL RESULTS

In this section we present experimental results on our method

applied to simulated DW-MRI data as well as real HARDI

data from a fixed rat spinal cord.

5.1. Synthetic data experiments

In order to test our method in approximating displacement

probability profiles from single fibers as well as from fiber

Fig. 2. Probability profiles estimated by applying our method

to simulated data of: left) 2-fiber crossing bundle and right)

corrupted crossings for different amounts of Riccian noise.

crossings, we synthesized a HARDI dataset of size 128×128
by simulating two fiber bundles crossing each other using the

realistic diffusion MR simulation model in [8] (b-value=1250

s/mm2, 81 gradient directions).The probability profiles that

were estimated from this dataset by using our method are pre-

sented in Fig. 2(left) showing correct fiber orientations.

Furthermore, in order to compare our proposed method

with other existing techniques, we performed another exper-

iment using simulated noisy MR signal of 2-fiber crossings

with different amounts of Riccian noise (Fig. 2 right). We

estimated the displacement probability profiles from the cor-

rupted signal using our proposed method and the following

existing methods: a)the DOT method described in [2],b) the

ODF method presented in [9] and c) the positive 4th-order dif-

fusion tensor model in [5]. For all methods we computed the

estimated fiber orientation errors for different amount of noise

in the data (shown in Fig. 3). The results conclusively demon-

strate the accuracy of our method, showing small fiber orien-

tation errors (∼ 6o) for typical amount of noise with signal

to noise ratios (SNR): 12.5-16.6. Furthermore, by observing

the plot, we also conclude that the accuracy of our proposed

method is very close to that of the DOT method and is better

than the ODF method for higher noise cases. Here, we should

note that our method estimated each probability profile in ap-

proximately 2ms (on a Pentium 2.4GHz) which demonstrates

the efficiency of our method.

5.1.1. Real data experiments

Figure 4 shows a real data example from a fixed rat spinal

cord. The protocol that used in this experiment included ac-

quisition of 22 images using a pulsed gradient spin echo pulse

sequence with repetition time (TR) = 1.5 s, echo time (TE) =

27.2 ms, bandwidth = 30 kHz, field-of-view (FOV) = 4.3×4.3
mm. After the first image set was collected without diffusion

weighting (b ∼ 0 s/mm2), 21 diffusion-weighted image sets

with gradient strength (G) = 664 mT/m, gradient duration (δ)

= 1.5 ms, gradient separation (Δ) = 17.5 ms and diffusion
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Fig. 3. Fiber orientation errors for different SNR in the data

using our method (P4) and three other existing methods: 1)

DOT, 2) ODF and 3) 4th-order DT. In the experiment we used

simulated MR signal of a 2-fiber crossing, whose probability

profile is shown in Fig.2(right).

time (Tδ) = 17 ms were collected. The image without dif-

fusion weighting had 8 signal averages, and each diffusion-

weighted image had 2 averages. By observing figure 4 it is

clear that the white matter probability profiles shows peaks

that correspond to fiber tracts which, as expected, are pre-

dominantly in the axial direction which is represented by the

blue color. This indicates that our proposed method estimates

correct fiber orientations in real HARDI datasets. The same

figure also presents (in the zoomed plate) regions where more

complex probability profiles were estimated that show the un-

derlying complexity of the tissue structures.

6. CONCLUSIONS

In this paper we presented a novel representation of the dis-

placement probability profile as a higher-order (4th) tensor.

We constructed a set of basis functions that can approximate

the DW-MRI signal and also have the property that their

Fourier transform can be computed analytically giving the

4th-order Cartesian basis. We presented a method for com-

puting efficiently the unknown tensor coefficients directly

from given DW-MRI datasets by solving an over-determined

linear system. We compared the performance of our method

in estimating fiber orientation with other existing techniques,

demonstrating the accuracy of our proposed method. Finally,

we applied our framework in real HARDI datasets from fixed

rat’s spinal cord showing the ability of our model to estimate

single-fiber and also multiple-fiber distributions.
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